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Abstract

The oscillations of a linear triatomic molecule with the first atom driven at a constant

velocity v are studied numerically. As v increases, we observe a sequence of transitions from

quasiperiodicity to chaos, mode locking, chaos, another mode locking then to chaos before the

atoms break off. The largest Lyapunov exponent does not rise linearly with the driven velocity. The

mode locking structure for the last onset to chaos has a universal fractal dimension 0.871 ± 0.001 at

a winding number far from the golden mean.

*This work was supported by ONR through NRL and the ONR Physics Division.

PACS Numbers: 05.45.+b, 82.40.Fp



Many dissipative systems are known to undergo transitions to chaos by

different routes. Such transitions in a system with few degrees of freedom may

provide some insight into turbulence. The quasiperiodic transition has been observed

experimentally'- in the Rayleigh-B~nard convective fluid, thermo-acoustic oscillation,

electronic conduction in extrinsic Ge, Josephson junctions, charge density waves, and

many others. These are some of the experiments that could be modeled by the circle

map. Recent theoretical developments have resulted in some quantitative and universal

characterizations for the onset of chaos3 . In most of experiments on the quasiperiodic

transition, one of the two frequencies can be varied directly. This allows the ratio of the

two frequencies (or winding number) to be set arbitrarily close to a value corresponding

to the golden mean (0.61803...) where one can expect to observe a universal scaling

behavior at the onset of chaos as predicted by theory. In some experiments, however,

the two frequencies arise intrinsically from the system and can not be controlled directly.

In these cases, for example the Rayleigh-Bnard convective 4He fluid 4
1 it is somewhat

difficult to achieve the golden mean ratio. However, the system exhibits a quasiperiodic

transition to chaos with a mode locking staircase that has a fractal dimension D close to

0.868 in good agreement with theoretical predictions by the circle map. As predicted,

this universal value of D is a global property and should hold not only at the golden

mean but also for a range of winding number at the onset of chaos3 s. Futhermore,

many condensed matter systems are known to undergo transitions to chaos when there

is a competition between two incommensurate frequencies which is not necessarily at

the golden mean.

In our model, we observed a different route to chaos beginning with two

incommensurate frequencies. The external control parameter can only vary both

frequencies indirectly. After the first transition to chaos, there is an abrupt transition to

mode locking that gives rise to the first section of an incomplete devil's staircase amidst

a set of quasiperiodic points. This is followed by a window of chaos then another section

of a mode-locked staircase, then comes the last stage of chaos before the disappearance

of the attractor signaling a separation of the atoms.
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The atomic motions in a gas or fluid driven by a high pressure front are likely

to become turbulent. Molecular dynamics studies of shock front propagation in solids

often involve the so called piston problem. In the one-dimensional version of this

problem, one atom at the end of a long chain is driven at a constant velocity and the

dynamics of the remaining atoms in the system is studied. The problem attracting

our interest is a simpler but related one. It consists of three identical atoms moving in

a straight line with the first atom driven at a constant velocity v . These atoms are

assumed to interact through a potential6

Vid = C[1 - K(x, - xi)]e - K(x -xi) , (1)

where z is the position of the ih atom, K and C are positive constants proportional

.o the equilibrium separation and the binding energy respectively. As in the model

containing many more atoms, this is a non-conservative system because a varied force

is required to maintain a -constant velocity of the first atom. Here we will investigate

in detail the relative motions of the three atoms, focussing on the behavior of the bond

length in response to different values of v. An immediate question concerns the value

of v that causes the three atoms to break apart, and the chaotic behavior that may

occur in the system.

We begin by integrating the following equations of motion

dT = (Y+,~ - Y" - 2 )e -(Yi+1 - Y ) - (Y - Y-, - 2)e-(Y '-Yi'- ) , (2)

where Y = Kz, and T = wt are the new atomic position and time in dimensionless units

respectively. The dimensions used in this calculation can be scaled so that each unit of

velocity, distance and time correspond to 8.295 Km/sec, 0.55 A and w-' = 6.63x10 5-

sec respectively. These values were based on an Nitrogen atomic mass of 14 anu, a

bond length of 1.1 A and binding energy of 5 eV. Any other type of atom will simply

result in a different set of scaled units. We will consider the oscillations of the two

bond lengths B, = Y - Y and B 2 = Y3 - Y2. In solving the set of ordinary differential

equations, one may not wish to use the relative coordinates due to a constraint on the

velocity of the first atom.
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For an extremely small value of v, the atoms are near their equilibrium positions

and their interaction can be approximated by a harmonic potential. Then the ratio of

two natural frequencies of the system is known as 1/v"3. The two bonds start oscillating

with two incommensurate frequencies. We will limit our discussion to the first bond

near the shock front. As we increase v, harmonic frequencies of the form mfl + nf 2

begin to appear as seen in the power spectrum in Fig.la. The phase space diagram

shows a quasiperiodic attractor for the bond which oscillates about its equilibrium

value of 2.0 (Fig.2a). The Poincar6 section of this attractor is shown in Fig.3a. The

first transition to chaos occurs when v reaches 0.267. The. power spectrum develops

broad band signals (Fig.lb), corrugations of the Poincar6 section appear (Fig.3b) and

trajectories in the phase space start wandering (Fig.2b). Fully developped chaos takes

place when v reaches 0.29 with characteristics shown in Fig.lc, 2c and 3c.

A sudden transition to quasiperiodicity takes places when v reaches 0.3093.

Then a mode locking begins at v = 0.3098 and continues until v = 0.31281. The

corresponding winding numbers are 7/18 and 5/13 respectively. We found two other

mode-locked ratios within this interval using the Farey tree sequence. The prospect

of locating other mode-locked ratios within this interval is certain, but very time

consuming. Interspersed among the mode-locked ratios are quasiperiodic points (Fig.4).

The second transition to chaos takes place when v is slightly greater than

0.31281. Similar chaotic behaviors in the phase space, Poincar6 map and power

spectrum are obtained. A second series of mode-locked states emerges when 0.31309 <

v < 0.31700. In this interval we also show four mode-locked ratios using the Farey

tree. Of course, there are other mode-locked states and quasiperiodic states as before.

For each mode-locked ratio, The Poincarx maps and phase space diagrams clearly

show the number of resonances of trajectories corresponding to the numerators of the

mode-locked ratios (Fig.5). The existence of quasiperiodic points among the plateaux

in the two mode-locked intervals suggests that the devil's staircase is incomplete and

the transition to chaos is far from criticality.
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The third transition to chaos takes place as v is increased past 0.317. The

chaotic states persist until v = 0.36804. By increasing v from below to above this

value, the chaotic attractor severely deforms. Its amplitude of oscillation bursts into

a linear motion as a result of a separation of the first two atoms. In another words

the attractor disappears. The bond stops oscillating about its equilibrium position and

keeps stretching out as time progresses.

Since the two portions of the mode-locked staircase are separated by an interval

of chaos in which the fractal characteristic is discontinued, we compute the fractal

dimension of each of the two sections of the staircase separately using the expression

ji~(si/st)D= 1,.where si is the gap between two plateaux and st is the largest gap. We

obtained D = 0.915 ± 0.001 for the first section and D = 0.871 ± 0.001 for the second

one. The value of D for the second portion of the staircase is in good agreement with

the universal value D = 0.868 ± 0.002. The larger value of D for the first section may

arise from a transition far from criticality, as this same value of D has been found in the

scaling behavior for the charge density wave and Josephson junction2 . It appears that

the nonlinearity in this model is not a monotonic function of the control parameter v.

rhen it is not feasible to show whether the system is approaching chaos from below or

above criticality, although D is less than unity.

The sequence of transitions is summarized in Fig.6 with three chaotic regimes

CHI to CH3 alternating among a quasiperiodic QP2 regime and two mode-locked

staircases PLI and PL2. The region to the right of CH3 marks a disappearance of the

attractor, as the atoms become separated. We calculate the largest Lyapunov exponent

A for the attractors within each of the three chaotic intervals using the method based on

the evolution of trajectories'. As sho,vn in Fig.7, there is a nonlinear relation between

the control parameter v and the level of chaos. After some fluctuations during the first

chaotic interval, X decreases in the second and last interval while remaining positive. In

this model, the nonlinearity parameter is fi::ed (K), the factor that leads to a transition

to chaos is due to the interaction of the external driven force, parameterized by the



velocity v, with a nonlinear potential. Significant nonlinearity will arise when the

driven force with a large value of v interacts with higher order terms of K from the

exponent in the potential. Driven nonlinear systems often generate both subharmonics

and higher harmonics. In the first transition to chaos, higher harmonics (mfl + 1f2)

were gradually suppressed. The lower fundamental frequency f, was the most stable

component to dissappear at the onset of chaos. We do not know the exact mechanism

for the repeated transition to chaos or for the reappearance of higher harmonics when

the system goes from chaos to mode-locking. However, the indirect cause may be

linked to the oscillation of the nonlinearity generated under different values of the

driven velocity. This is reflected in the cu ve for the Lyapunov exponent.

There are systems in .which chaos emerges regularly in parameter space. A

well known example is the Belousov-Zhabotinsky reaction. This experiment" reveals

that alternating regimes. of chaos and periodicity appear regularly in a sequence of

multipie bifurcations. In this case, the transition to chaos may be characterized by a

different universal number but does not possess a mode locking structure and a fractal

dimension as in our model. It is also known that experiments on the transition to chaos

via mode locking exists2'9 but the recurrence of chaos was not found in these models.

In a particular Rayleigh-B~nard experiment" for a specific type of convective cells, it

has been observed that the system transitioned from quasiperiodicity to chaos then

to mode-locking at one winding number only, but no mode-locked structure has been

found. We know of no previous results from experiments or theoretical models that

exhibit a similar sequence of transitions to chaos like our model. We have also looked

into a similar model with a much larger size, up to five hundred atoms in a linear chain.

Similar attractors were found on groups of three atoms when the chain was driven by

a strong front and broken into segments. However, the dynamics is very complex and

the work is still underway. For a system with few degrees of freedom, this is the first

model that exhibits recurrent transitions to chaos and a mode-locked staircase with a

universal fractal dimension. It also provides some new details to the dynamical process

of atoms interacting with a steady moving front.
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List of Figures:

Figure la: Power spectrum for the oscillating bond: a) Quasiperiodic

regime, here v = 0.23. b)The first transition to chaos, v = 0.267. c)

Chaotic state, v = 0.28. These same values of v are used in Figs. 2 and

3.

Figure 2: Two-dimensional phase portraits from quasiperiodic a) to chaotic

state c).

Figure 3: Poincar6 sections obtained from cutting the attractors in Fig.2.

Figure 4: Plot of the winding number w = L' for the two sections of the
12

devil's staircase. We only show the large plateaux and a small number

of quasiperiodic points. Between the two sections is a chaotic region.

Figure 5: A typical mode-locked state is shown here for w = 3/8, a) Phase

space portrait, b) Poincare section. Note how the attractor transforms

from quasiperiodicity (Fig.2a) to mode-locking (Fig.5a).

Figure 6: Summary of the transition sequence plotted on the velocity v axis.

See text for details.

Figure 7: Variation of the largest Lyapunov exponent A versus the velocity

v. In the two regimes of mode-locked states, A drops to near zero.
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